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Abstract While NMR studies of proteins typically aim at

structure, dynamics or interactions, resonance assignments

represent in almost all cases the initial step of the analysis.

With increasing complexity of the NMR spectra, for

example due to decreasing extent of ordered structure, this

task often becomes both difficult and time-consuming, and

the recording of high-dimensional data with high-resolu-

tion may be essential. Random sampling of the evolution

time space, combined with sparse multidimensional Fou-

rier transform (SMFT), allows for efficient recording of

very high dimensional spectra (C4 dimensions) while

maintaining high resolution. However, the nature of this

data demands for automation of the assignment process.

Here we present the program TSAR (Tool for SMFT-based

Assignment of Resonances), which exploits all advantages

of SMFT input. Moreover, its flexibility allows to process

data from any type of experiments that provide sequential

connectivities. The algorithm was tested on several protein

samples, including a disordered 81-residue fragment of the

d subunit of RNA polymerase from Bacillus subtilis con-

taining various repetitive sequences. For our test examples,

TSAR achieves a high percentage of assigned residues

without any erroneous assignments.

Keywords Algorithm � Automated resonance

assignment � High-dimensional fast NMR �
Intrinsically disordered protein

Introduction

The first steps in protein characterizations by NMR consist of

sample preparations, recording of spectra and assignment of

resonances. Once chemical shifts are determined for (nearly)

all nuclei considered, further experiments can provide a

wealth of information on the protein, describing structure,

dynamics, function and interactions. Besides the preparation

of an NMR-friendly sample, the limiting barrier for a suc-

cessful protein study by NMR is the resonance assignment;

here the protein size, its folding state (multiple conforma-

tions, intrinsically disordered…) and, related to this, the

complexity and quality of the spectra are critical. A central

step is the detection of sequential connectivities between

adjoining amino acid residues. Inspection of chemical shifts,

such as those for Cbs, adds useful information by limiting the

number of consistent types of residues.

3D triple-resonance spectra like HNCO (Kay et al.

1990), HN(CA)CO (Clubb et al. 1992), HNCA (Kay et al.

1990), CBCA(CO)NH (Grzesiek and Bax 1992a),

CBCANH (Grzesiek and Bax 1992b) are widely used for

this purpose. However, if the extent of spectral overlap of

the NMR signals (peaks) is high, the spectra interpretation

and assignment becomes complicated and time-consuming.

Spectra of both high dimensionality and high resolution

reduce overlap and ensure good precision in the determi-

nation of peak positions, both of which are critical for

resonance assignment procedures. Such spectra can be

effectively acquired with the use of non–Cartesian sam-

pling in evolution time space by dramatically reducing the
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number of acquired FIDs [recently reviewed in (Coggins

et al. 2010; Freeman and Kupče 2012; Hiller and Wider

2012; Hyberts et al. 2012; Kazimierczuk et al. 2010a,

2012; Maciejewski et al. 2012; Orekhov and Jaravine

2011). One of the most general sampling schemes is ran-

dom sampling, which allows for optimal resolution also in

C4D experiments (Kazimierczuk et al. 2009). Employing

this technique enabled us recently to develop a set of 4D

(Zawadzka-Kazimierczuk et al. 2010), as well as 5D and

6D (Kazimierczuk et al. 2010b; Zawadzka-Kazimierczuk

et al. 2012) experiments dedicated for easy resonance

assignment. Data from these experiments can be processed

using sparse multidimensional Fourier transform (SMFT)

(Kazimierczuk et al. 2009), resulting in a set of 2D cross-

sections. Each cross-section contains peaks originating

from adjacent residues yielding sequential connectivities.

An important feature is that a single common basis spec-

trum (usually 3D HNCO) is used to define cross-sections

from several spectra. This allows collecting cross-sections

from various spectra types that correspond to the same spin

system, and thus assembling of resonances originating

from various spectra into one spin system. Resonance

assignment of data obtained by SMFT is realized by sorting

cross-sections: peaks, which are identical in cross-sections

for adjacent residues, are used to build chains of spin

systems that correspond to fragments of the polypeptide.

This task can be performed manually; however, it seems to

be a perfect target for a computer algorithm.

Several algorithms have been designed for automated

sequence-specific signal assignment, reviewed in (Baran

et al. 2004; Altieri and Byrd 2004). The protocol of many

programs consists of three steps: (1) collecting peaks into

spin systems, (2) forming chains of these spin systems which

correspond to consecutive residues, (3) mapping of these

chains onto the (known) protein sequence. Step (1) is an

important issue in automatic assignment, nonetheless, it is

often omitted, which consequently requires user-defined

spin systems as input, e.g. for the MARS program (Jung and

Zweckstetter 2004). The main differences among the algo-

rithms concern their approach to steps (2) and (3). Some

algorithms exploit a global optimization approach, where

a function describing assignment quality is defined and

optimized [e.g. the program GARANT (Bartels et al. 1996,

1997)], other use a ‘‘best-first’’ strategy based on local

optimization [e.g. the program AUTOASSIGN (Zimmer-

man et al. 1997)], a combination of both approaches

[programs MARS (Jung and Zweckstetter 2004), MATCH

(Volk et al. 2008), PASA (Xu et al. 2006)], or present all

‘‘acceptable’’ assignments so that the user can decide on their

quality [program SAGA (Crippen et al. 2010)]. Input data

for all above programs includes the amino acids sequence of

protein and lists with spectral information. The variety of

requirements for the lists is important for the motivation for

the present work and thus requires deeper discussion. In

some algorithms the peak lists from various experiments can

be directly used, in others a special list has to be constructed

from the peak lists by the user. Even in the former case the

algorithms differ in the types of required peak lists. The

program GARANT is very flexible: one can define any kind

of experiment and use any peak list. In particular, the fol-

lowing feature is allowed, which will be referred to as not-

fully specified columns: columns of the peak list may contain

frequencies of various nuclei, e.g. COi or COi-1 (like in a

HN(CA)CO spectrum), Cai-1 or Cbi-1 (like in a CBCA

(CO)NH spectrum) etc. A similar degree of flexibility is also

implemented for MATCH. AUTOASSIGN can take lists

with not-fully specified columns if each is complemented

with a list containing a corresponding fully specified column,

so that the program can distinguish between the two types of

peaks in the former list. Moreover, AUTOASSIGN is able to

find connectivities only via CO, Ca and Cb chemical shifts.

SAGA was designed to take exclusively 3D data from

experiments pre-defined in the program. Similarly, the pro-

gram AUTOBA (Borkar et al. 2011) is adjusted for input

from the HN(C)N suite of experiments, either using the 3D

versions or just 2D projections. The MARS and PASA pro-

grams only accept a single list containing frequencies of

nuclei belonging to one spin system (the columns have to be

fully specified) rather than experimental peak lists. There-

fore preparation of such a list requires a priori thorough

analysis of peak lists, which can prove difficult in cases with

insufficient signal dispersion.

Despite the fact, that some of the above algorithms are

flexible enough to analyze data from various (though usually

not all) types of experiments presented in our recent works

(Zawadzka-Kazimierczuk et al. 2010, 2012, Kazimierczuk

et al. 2010b), none of them makes optimal use of the infor-

mation present in a set of 2D cross-sections obtained with

SMFT. This concerns both taking full advantage of all

available input spectra, and in particular providing results in

a form that allows feedback for user intervention in ambig-

uous situations. Regarding the input, while most of the pro-

grams can use spectra which involve two adjacent residues,

only few can process data from magnetization pathways

that involve three consecutive residues, e.g. (H)NCO(NCA)

CONH contains peaks of type Ni–COi-1–COi–Ni?1–

Hi?1
N which join i - 1, i and i ? 1 residues. Furthermore,

while the type of some peaks can be uniquely characterized,

this is not always the case. Consider the (frequent) example

of more than one peak on each cross-section, e.g. on the CA-

CO planes in 4D HNCACO spectra there are Cai–COi and

Cai-1–COi-1 peaks, which cannot be distinguished at this

stage. Some programs have problems in handling these

ambiguities. Similarly, when assigning amino acid types to a

particular spin system, a program should not only consider

chemical shift statistics but also the signs of peak amplitudes.
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For instance, in a 5D HN(CA)CONH the signs of all peak

amplitudes in the corresponding cross-section change if the

preceding residue is glycine (due to the lack of Ca–Cb
coupling). The signs depend on the pulse sequence employed

and on the phase correction applied, and are thus defined in

the input file. Finally, the output of an assignment program

for SMFT data should, besides listing chemical shifts, also

identify the corresponding 2D cross-sections in the case of

unambiguous assignments; this would enable collecting the

spectral data necessary for manual inspection of ambiguous

parts of the assignment.

In this paper we present a program called TSAR (Tool

for SMFT-based Assignment of Resonances) for automatic

resonance assignment in proteins, which is designed to use

2D cross-sections of one or several high-dimensional

spectra obtained with SMFT, exploiting all features of this

type of input. The types of spectra may be chosen out of the

set proposed by us (Zawadzka-Kazimierczuk et al. 2010,

2012, Kazimierczuk et al. 2010b), but the program accepts

data of any type of experiments.

Methods

Principle of operation

The experimental data required by the program is one

spectrum of lower dimensionality (basis spectrum) and one

or more spectra of high dimensionality (C4D). The basis

spectrum should contain exactly one peak per amino acid

residue and the peaks should ideally be well-separated (this

issue will be discussed in detail in the ‘‘Discussion’’ section).

In all experimental examples presented here, a 3D HNCO

spectrum was used as basis spectrum. The high dimension-

ality spectra should contain some (or all) dimensions of the

basis spectrum and two additional dimensions in order to

enable SMFT processing (Kazimierczuk et al. 2009). Note

that in various spectra different dimensions of the basis

spectrum can be used for calculating SMFT cross-sections. It

is essential to calculate cross-sections of various spectra

relying on the same peak list from the basis spectrum (i.e.

containing the peaks in the same order). This ensures that

information of corresponding cross-sections from various

spectra can be properly collected in a structure referred to as

cross-section spin system or CSSS. Each CSSS contains

chemical shifts corresponding to the HN, N, CO, Ca, Cb, Ha
and Hb nuclei of up to three consecutive residues. All spectra

together should contain sufficient information to form

sequential connectivities.

The principle of operation of the program is shown in

Fig. 1 and details of the algorithm are explained in the

sections below. In short, after reading the input data, one

CSSS per peak in the basis spectrum is created. At first

only the chemical shifts known from the basis spectrum

are entered into the appropriate sites in each CSSS.

Next, peaks from cross-sections (originating from all other

Fig. 1 Principle of operation

of the TSAR program. The

individual steps of this flow-

chart are explained in

‘‘Methods’’
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spectra) are assigned to peak types (i.e. specific nuclei

combinations), which are defined for each spectrum in an

input file. During this process the CSSS structures are

successively filled with newly obtained chemical shift

values. When completed, the types of amino acid residues

compatible with a given CSSS are determined. The next

step is finding sequential connectivities between pairs of

CSSSs. Chains of CSSSs are then formed by sorting the

cross-sections, such that the order of the residues, from

which they originate, corresponds to the protein sequence.

During this mapping step information about possible resi-

due types is exploited.

Input

The input includes the protein sequence, descriptions of the

experiments used and peak lists (Tables S1 and S2 in

Supplementary Material), all in the form of text files. The

description of the basis spectrum consists of the names and

relative positions (in terms of residues) of nuclei for all

Fig. 2 Flow-chart summarizing the assignment of peaks to peak types. See ‘‘Methods’’ for explanations
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dimensions (e.g. COi-1, Ni and Hi
N). The definitions of

higher-dimensional experiments are more complex and

contain information about all types of peaks expected in the

cross-sections: types of nuclei and relative positions,

amplitude sign and whether the peak can switch sign under

specific conditions (e.g., when the preceding residue is a

glycine). Moreover, for each dimension of each spectrum

the chemical shift tolerances are needed; these are initially

best set to the inverse of the maximum evolution time for

the corresponding dimension (in ppm). A more thorough

discussion of these tolerances is given in the next section. It

should be noted that relative positions of nuclei in indi-

vidual spectra can include, besides i - 1 and i, also i ? 1.

Assignment of peaks to peak types

On each cross-section there may be several peaks of vari-

ous types, e.g. in a 4D HNCACACB spectrum four peaks

are expected on any (non-glycine) CA-CAB cross-section:

Cai–Cai (positive) and Cai-1–Cai-1 (positive), Cai–Cbi

(negative) and Cai-1–Cbi-1 (negative). The program uses

all available information in order to attribute a peak type to

each peak. The corresponding algorithm, shown in Fig. 2,

also needs to handle situations where cross-sections do not

show the expected number of peaks due to artifacts (false

peaks) or missing peaks.

There are several methods enabling recognition of a

peak type. They are arranged such that the most reliable

ones are applied first. Importantly, every new peak

assignment may add information about chemical shifts to a

CSSS, which can help in the assignment of other peaks.

Therefore the methods are used in a loop (separately for

each CSSS): following any new peak assignment, the

procedure is restarted from the beginning. Some methods

to assign a peak type rely on comparisons of chemical

shifts, which in turn are based on tolerances. The whole

procedure is performed in two stages: At first the usually

rather large initial tolerances, which are read from the input

file and typically equal to the inverse of corresponding

maximum evolution times, are used. At this stage only

unambiguous assignments are made. Once as many

assignments as possible are obtained with these initial

tolerances, statistical values of differences in correspond-

ing chemical shifts for each pair of spectra become avail-

able: mean and standard deviation are calculated, and

the initial tolerances are replaced with four times the

appropriate standard deviation (provided the new value is

smaller than the old one).

The following describes the methods for peak type

recognition (see Fig. 2):

• OutOfRangeCACBHA—for spectra in which Ca and

Cb (Ha and Hb) resonances appear in the same

dimension: if an aliphatic carbon chemical shift is

outside of the Ca range (Caliph \ 39.5 ppm) for a peak,

all peak types which originate from a Ca coherence are

excluded. A similar procedure is applied to aliphatic

carbon resonances outside of the Cb range (54.5 ppm

\ Caliph \ 58.5 ppm) and to aliphatic proton reso-

nances outside of the Ha range (Haliph \ 1.85 ppm).

The ranges in all three cases were established using the

mean and four standard deviations taken from the

Biological Magnetic Resonance Bank (BMRB, (Ulrich

et al. 2008)) statistics for the ‘‘restricted’’ set with only

diamagnetic proteins.

• Sign—for each peak the peak types with opposite

amplitude sign are excluded. If the peak can change its

sign (e.g. in the presence of glycine) this function is not

used until another method clarifies whether the signs

are standard or changed.

• CSSS-Defined2D—if a particular type of peak has both

chemical shifts already present in the CSSS chemical

shifts structure, then this type is either excluded or

confirmed for each peak on this cross-section. If there is

more than one peak which is close to the defined

position and the statistics is available (second stage of

the procedure), the closest one is evaluated according to

the so-called distribution condition (for details see the

bottom of this section). If there is no peak at the defined

position, it is artificially added (but with unknown

sign).

• Diagonal—if a particular type of peak is diagonal on a

cross-section, it is excluded for peaks with two different

chemical shift values. If there is only one diagonal type

not assigned to any peak and one diagonal peak left, the

corresponding assignment is confirmed.

• CSSS-Defined1D—if a particular type of peak has one

dimension already present in the CSSS structure, this

type is excluded for peaks with different value of this

chemical shift. If there is exactly one peak close to the

defined position, it is assigned to the considered peak

type. If there is more than one peak close to the defined

position, there are at least as many peaks on the cross-

section as expected and the statistics is available

(second stage of the procedure), then the closest one

is evaluated according to the distribution condition (for

details see the bottom of this section).

• OnlyType&OnlyPeakLeft—if in a particular spectrum

there is only one type of peak left (not assigned to any

peak) and on a given cross-section there is only one

peak left (not assigned to any peak type), then this peak

is assigned to the remaining peak type.

• DifferentiateCA-CB—if on a cross-section there is the

expected number of peaks, only two of them are not

assigned to any type and the types left originate from

different nuclei type, namely Ca and Cb, this method
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tries to distinguish which peak corresponds to Ca and

which to Cb. If both chemical shifts are lower than 54.5

ppm (upper limit for Cb for residues other than serine

or threonine) and the difference in these chemical shifts

is bigger than a safety margin (set to 1 ppm), the peak

with the lower chemical shift is assigned to the peak

type originating from Cb and the peak with the higher

chemical shift to the type originating from Ca. If both

chemical shifts are higher than 58.5 ppm (lower limit

for Cb for residues of serine or threonine) and the

difference in these chemical shifts is bigger than the

safety margin, the peak with the higher chemical shift

is assigned to the peak type originating from Cb and

the peak with the lower chemical shift to the type

originating from Ca.

During the second stage of the procedure, when statistics

from early assignments is available, two methods (CSSS-

Defined2D and CSSS-Defined1D) rely on a distribution

condition. If several peaks are close to the position known

from CSSS, the closest is accepted to be of the considered

type provided the following condition is fulfilled. Two

peaks are considered: the geometrically closest from the

known position (peak i) and the second closest (peak j).

Peak i is accepted if the following inequality is fulfilled (for

CSSS-Defined2D it is checked in both dimensions):

cdf posi � pos� lj jð Þ � 0:5ð Þ
� 1:5\ cdf posj � pos� l

�
�

�
�

� �

� 0:5
� �

ð1Þ

where pos is the position known from CSSS, posi is the

position of the peak i, posj is the position of the peak j (all

positions in the considered dimension), cdf is the

cumulative distribution function for the corresponding

normal distribution with mean l and standard deviation r,

describing the probability that the function’s argument

takes on a value less or equal to that argument. Thus for

positive x:

cdf ðxÞ � 0:5 ¼
Zx

0

1
ffiffiffiffiffiffiffiffiffiffiffiffi

2p � r
p exp �ðx

0 � lÞ2

2r2

 !

dx
0 ð2Þ

If the condition is not fulfilled for the CSSS-Defined2D

method, the closest peak is still accepted, but its intensity

sign is changed to ‘unknown’.

Recognition of amino acid types

Identification of compatible amino acid types for each

CSSS strongly limits the number of possible choices for

mapping of the CSSS onto the protein sequence. However,

at the initial stage the conditions for excluding certain

amino acid types are formulated in a weak way not to

accidentally exclude the correct one; further elimination,

when necessary, will be performed during the mapping

stage. For the initial recognition of amino acid types the

TSAR program employs two types of methods: structural

and statistical.

The structural methods are based on the knowledge of the

chemical structure of amino acids. Some of them examine

whether a certain type of nuclei is present in the given CSSS

(individually for all relative positions). Thus, if a HN

chemical shift is recognized, the residue cannot be proline; if

a Cb or Hb chemical shift is present, glycine is excluded from

the set of possible amino acid types; if there are two different

Ha chemical shifts (corresponding to two nuclei of a pair of

prochiral methylene protons), all residue types except for

glycine are excluded, and—similarly—if there are two dif-

ferent Hb chemical shifts, all types which contain only one

Hb proton (or a methyl group) are excluded: alanine, iso-

leucine, threonine and valine. Other types of structural

methods can be exploited depending on the experimental

technique used. If Ca–Cb scalar coupling evolves during an

experiment for the time of approximately 1
�

JCa�Cb
, the sign

of all peak amplitudes are inverted, except for those, which

originate from glycine. This results in a relative change of

sign of some glycine-related peaks. For example, in the

HN(CA)CONH spectrum, on HN–N cross section corre-

sponding to COi-1–Ni–Hi
N HNCO peak, two peaks with

opposite signs are expected for Hi
N–Ni and Hi-1

N –Ni-1.

However, if residue i - 1 is glycine, both signs are reversed.

The statistical methods are based on BMRB statistics and

involve Ca, Cb, Ha and Hb chemical shifts. Statistics on b-

nuclei are performed for each type of amino acid: a residue

type is excluded, if the observed chemical shift is over four

standard deviations away from the BMRB mean value.

Additionally, in the case of Cb the two forms of cysteine

(oxidized and reduced) were treated separately. Since only

joint statistics for both forms are directly available from the

BMRB, the parameters for the two distributions were calcu-

lated based on the joint BMRB histogram by fitting the sum of

two Gaussian functions, yielding the following values:

• oxidized form: mean = 40.89 ppm, standard deviation =

3.97 ppm

• reduced form: mean = 29.09 ppm, standard deviation =

2.51 ppm

As Ca and Ha chemical shifts exhibit less diversity

compared to Cb and Hb, only glycine residues are recog-

nized at this stage using chemical shifts of the a-nuclei: if

Ca or Ha is above the mean plus four standard deviations

for glycine, this amino acid type is excluded.

Should the procedure of amino acid type recognition

exclude all types of residues (due to some input error), then

all types are allowed again, and the program proceeds after

issuing a warning with the request for a manual check.
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Sequential connectivities between CSSSs, chains

of CSSSs

Prior to establishing sequential links, pairs of mismatching

CSSSs are identified; these are pairs which have at least

two peaks of corresponding types which do not match

(within at least one type of spectrum). To find mismatches,

also peaks not assigned to any type are taken into account,

provided that all of them can be potentially assigned to the

considered type of peak and among them there is at least

one, which can be potentially assigned only to that type. In

such a case all potential pairs of peaks are compared and if

none of them matches, the mismatch is established. At this

stage the initial tolerances (inverse maximum evolution

times) are used. CSSSs pairs which have a mismatch

cannot be linked later on, even if some peak positions are

consistent.

Note that for each CSSS two types of both mismatches

and links exist: forward ones (to a successor) and backward

ones (to a predecessor). The two types of links/mismatches

can be established using different peak types. For example,

for a given CA-CO cross-section of an HNCACO spec-

trum, the Cai-1–COi-1 peak is used to find backward links

and Cai–COi to find forward links. Technically, the pro-

gram builds only forward links, the backward links are

formed artificially based on already known forward links.

For the establishing of links between CSSSs, statistics of

distance differences between corresponding peaks within

each type of spectrum are needed. This relies on pairs of

cross-sections with unambiguous links (only one cross-

section contains a peak whose position is within the initial

tolerances from a given peak of the given cross-section).

Having formed all such reliable pairs, the standard devia-

tion of distance differences is calculated for both dimen-

sions of each spectrum. These values can then be used to

cope with some ambiguous cases, as described below.

The next step is to establish the links. Each peak of the

CSSS (below called main peak) is compared to the peaks

from the same spectrum but different CSSS (called test

peaks). If only one test peak can be found within the initial

tolerances from the main peak, the link between the two

CSSSs is established immediately. However, if several test

peaks fall into this range, a stricter criterion employing the

above calculated standard deviations of distance differ-

ences is needed. The procedure is then similar to that

employed during assignment of peaks to peak types.

Firstly, if the distance between the main peak and the

closest test peak is in any dimension smaller than three

standard deviations, all test peaks whose distance in this

dimension from the main peak exceeds four standard

deviations are excluded. Note that in this procedure we do

not compare peaks from various spectra, but only from

various cross-sections of the same spectrum. This allows us

to avoid the problem of spectra calibration. The problem

may appear in the very infrequent situation when a peak is

artificially added (in the CSSS-Defined2D function); then

its coordinates originate from other spectra and the match

may be not perfect. If after applying the above criterion

there are still more than one potential links from a single

CSSS, then for all test peaks i, except for the closest one,

the following condition is checked in both dimensions:

cdf posclosest � posmainj jð Þ � 0:5ð Þ � 3
\ cdf posi � posmainj jð Þ � 0:5ð Þ

ð3Þ

where posmain is the position of the main peak, posclosest is

the position of closest test peak, posi is the position of the

peak i (all positions in the considered dimension), cdf is the

cumulative distribution function for the corresponding

normal distribution with mean equal 0. If the above con-

dition is fulfilled the test peak i is excluded.

The above algorithm allows establishing several links

from one CSSS. Therefore, building up the chains of

CSSSs is not straightforward. The scheme of this procedure

is presented in Fig. 3. If CSSS i forms only one forward

link to CSSS j and CSSS j forms only one backward link to

CSSS i then the i - j pair becomes a fragment of a chain

(Fig. 3a). The situation is more complex, when the CSSS

under consideration forms more links. If CSSS i forms only

one forward link to CSSS j, but CSSS j forms several

backward links, then the i - j fragment is formed provided

that that all other CSSS linked to j form alternative forward

links (Fig. 3b). If CSSS i forms several forward links, then

the i - j fragment is formed only if from those CSSSs

that have backward links to i only CSSS j has a single

backward link (Fig. 3c). When all possible fragments of

chains are formed, they are joined together e.g. the frag-

ment ending with CSSS k is joined with the fragment

starting with CSSS k.

This chain-forming procedure is not 100 % reliable, i.e.

chains with false links occur. Such cases are usually

detected in the next stage of mapping the chains onto the

protein sequence, where they also can be corrected.

Mapping the chains of CSSSs onto the protein sequence

The mapping is performed according to the chains’ lengths,

starting from the longest chain (see also Fig. S1 in Supple-

mentary Material). Longer chains have a better chance for a

unique sequence of possible chemical shifts, which reduces

the number of possible mapping sites and facilitates the

starting of the mapping procedure. For each chain all pos-

sible sites in the sequence are found. Amino acid types

compatible with each CSSS have to match those present in

the sequence and there can be no conflicts with the chains

already positioned. The latter condition means not only that
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chains cannot overlap, but also that if they are positioned one

directly after the other, no mismatch between the last CSSS

of the first chain and the first CSSS of the second chain is

allowed.

If several sites in the sequence fulfill the above criteria, the

best one can be chosen using BMRB statistics. For all the

sites the average deviation from the BMRB mean (in units of

BMRB standard deviations) for all residues of the chain is

calculated. Initially, it is calculated only for Cb chemical

shifts. If the smallest result is at least three times smaller than

the second smallest (or five times in the case of chains con-

sisting of only one CSSS), the site is accepted. In the opposite

case the deviations for Hb are added to Cb. If this still does

not identify a unique solution, Ca deviations are calculated,

but these values are not used for chains of length one. If also

this last criterion fails, the chain remains unmapped at this

step; it may be mapped when positioning of another chain

limits the number of potential sites for the first one.

If there is already only one site, where the chain can be

positioned, it is checked whether there will not be any con-

flict with the positioning of chains of similar length (at least

70 % of the length of the currently considered chain). If there

is such a conflict, the chain remains unmapped until placing

of another chain allows deciding which of the two conflicting

chains should be mapped in this region. However, if a chain

A has only one conflict—with a chain B—and the chain B

has already at least one other conflict, then chain A is posi-

tioned. If a chain with one potential site is not in any conflict,

it is positioned and cannot be moved any more.

If a chain cannot be positioned at any site, an error in the

chain is assumed. It is split into shorter chains in an attempt

to find a sub-chain that can be positioned. This sub-chain

should be as long as possible, but not shorter than the next

unmapped chain. Positioning of the sub-chain follows the

method described above. If the procedure succeeds, the

remaining chains from the termini of the original chain

(one or two chains) are put into the array of unassigned

chains according to their length. If the attempt to position

the sub-chain fails, the full chain is built up again,

assuming that the split was also incorrect; attempts of

positioning it, possibly including a new splitting, may then

be repeated at a later stage.

After positioning of any chain, the whole procedure is

repeated starting from the longest unmapped chain.

Output

Four text files are produced as output of the program:

‘peaks.txt’, ‘links.txt’, ‘chains.txt’ and ‘resonance_list.txt’,

containing the assignment result and all the information

allowing evaluation of the program performance. The

‘peaks.txt’ file contains a list of peaks of unknown peak

type, and a complete list of all peaks with assigned peak

types (Table S3 in Supplementary Material). The ‘links.txt’

file contains a list of forward links for each CSSS and a list

of all mismatches between CSSSs (Table S4 in Supple-

mentary Material). In the ‘chains.txt’ file the protein

sequence with assigned CSSSs is printed; in addition all

assigned and unassigned chains, with possible assignments,

are listed (Table S5 in Supplementary Material). The

‘resonance_list.txt’ file (not shown) contains all chemical

shifts obtained by the program and is the main output of

TSAR. In the presentation of the results, references are

made to the CSSSs numbers (corresponding to the initial

order of the peaks in the basis spectrum). This makes it

easy to find spectral data of doubtful fragments of assign-

ment or unassigned CSSSs, allowing checking and com-

plementing the assignment manually.

Implementation

The TSAR program was written in Python, version 2.5. For

all examples presented in the ‘‘Results’’ sections, execution

time did not exceed 10 s on a single CPU. For academic

users the program is available free of charge from the

authors upon request.

Experimental

To test the algorithm, data from four proteins were used: the

5–79 fragment of bovine Ca2?-loaded calbindin from the

d9k P47 M mutant (below called calbindin), the protein

interacting with NIMA-kinase from Cenarcheaum symbio-

sum (below called CsPin), the cupredoxin azurin from

Pseudomonas aeruginosa, and the d subunit of RNA poly-

merase from Bacillus subtilis (below called delta). All the

Fig. 3 Different situations occurring during the formation of CSSSs

chains. Circles with letters represent individual CSSSs, and arrows
are links for chain formation. Solid arrows link the CSSSs that

constitute a fragment of a formed chain, dashed arrows represent

other links (see text). In all cases, a i - j chain fragment is formed.

a CSSS i forms exactly one forward link and CSSS j forms exactly

one backward link. b CSSS j forms several backward links, but out of

its potential predecessors just one CSSS (i) forms exactly one forward

link. c CSSS i forms several forward links, but out of its potential

successors just one CSSS (j) forms exactly one backward link
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samples were uniformly 13C, 15N-labeled. The concentra-

tions and pH were as follows: 1.0 mM and pH = 6.0 for

calbindin, 1.5 mM and pH = 7.5 for CsPin, 1.0 mM and

pH = 5 for azurin and 0.7 mM and pH = 6.6 for delta.

For calbindin (Kazimierczuk et al. 2010b), CsPin (Za-

wadzka-Kazimierczuk et al. 2010) and delta (Motáčková

et al. 2010; Zawadzka-Kazimierczuk et al. 2012) the data

have been acquired previously, on a Varian NMR System

700 spectrometer, equipped with a Performa XYZ PFG

unit, using the standard 5 mm 1H, 13C, 15N triple resonance

probe. The azurin sample was measured on a Varian NMR

INOVA 900 spectrometer, equipped with a cold probe.

The calbindin, delta and azurin samples were measured at

298 K and the CsPin sample was measured at 289 K. All

acquisition parameters are summarized in Table 1.

Results

The TSAR program was tested on several data sets recorded

for both structured and unstructured proteins and therefore

featuring various level of chemical shift degeneracy. The

sizes of the proteins varied from 8.5 to 20 kDa. In each case

the basis spectrum was a 3D HNCO spectrum, and various

4D and 5D techniques were chosen for the higher-dimen-

sional experiments as listed in Table 2 for each protein,

together with experimental times. Completeness of each data

set is shown in Table 3 as the percentage of cross-sections

with all expected peaks present, with one peak missing, with

two peaks missing etc. Table 4 summarizes the performance

of the program for each protein and various sets of input

spectra by providing percentages of assigned CSSSs and

resonances. The latter is with respect to the theoretically

possible number of the given set of techniques (i.e. only

nuclei types with chemical shifts observed in any of the

experiments used are counted). Also reported in Table 4 is

the extent of assignment for the chains of CSSSs formed by

the program; these were divided into three groups according

to their length (long: C8 CSSSs, medium: 3–7 CSSSs, short:

B2 CSSSs). Table 4 also shows the numbers of assigned

CSSSs from long, medium and short chains. Note that a

larger number of long chains may contain fewer CSSSs than

a smaller number of (very) long chains, like for the experi-

ment sets ‘A B C D F’ and ‘A B D F’ for azurin. The chain

lengths provide valuable information about the assignment

quality: the longer a resulting chain, the more reliable is the

result (but note that Pro will always end a chain; thus, due to

Pro36 and Pro40 in azurin, there should always be a chain of

maximal length three). In Table 5, the fractions of assigned

resonances with respect to various types of nuclei, i.e. HN, N,

CO, Ca, Cb, Ha and Hb, are presented. Before presenting

results for the individual proteins, it is important to state that

for all proteins all assignments are correct.

Calbindin (Forsen et al. 1990; Skelton et al. 1995),

the smallest of the proteins tested, consists of 75 residues

with little problem with respect to signal dispersion. Three

Table 1 Experimental parameters for the indirect-dimensions for all spectra

Sample Expa Nib Dimension 1 Dimension 2 Dimension 3 Dimension 4

Nucl tmax
c swd Nucl tmax

c swd Nucl tmax
c swd Nucl tmax

c swd

Calbindin A 300 CO 30 2.8 N 50 2.5 n.a. n.a. n.a. n.a. n.a. n.a.

Calbindin E 725 HAB 6.5 4.0 CAB 7.1 14.0 CO 28 3.0 N 28 2.5

Calbindin F 675 HN 5.5 6.0 N 27.5 2.5 CO 8.9 3.0 N 27.5 2.5

CsPin A 2,000 CO 40 3.8 N 50 2.5 n.a. n.a. n.a. n.a. n.a. n.a.

CsPin C 1,800 CO 20 3 CA 10 6.2 N 30 2.5 n.a. n.a. n.a.

CsPin D 1,800 CA 7.1 14.0 CAB 10 14.0 N 30 2.5 n.a. n.a. n.a.

Azurin A 300 CO 20 4.5 N 30 3.6 n.a. n.a. n.a. n.a. n.a. n.a.

Azurin B 810 CO 8 4.5 CA 10 8.0 N 28 3.6 n.a. n.a. n.a.

Azurin C 1,000 CO 20 4.5 CA 8 8.0 N 28 3.6 n.a. n.a. n.a.

Azurin D 1,100 CA 7 20.6 CAB 10 20.6 N 28 3.6 n.a. n.a. n.a.

Azurin F 1,000 HN 7 8.0 N 28 3.6 CO 20 4.5 N 28 3.6

Delta A 484 CO 100 3.7 N 120 2.5 n.a. n.a. n.a. n.a. n.a. n.a.

Delta E 880 HAB 10 4.0 CAB 7.1 14.0 CO 30 3.0 N 50 2.8

Delta F 740 HN 20 6.0 N 50 2.8 CO 30 3.0 N 50 2.8

Delta G 1,570 N 50 2.8 CO 45 3.0 CO 45 3.0 N 75 2.8

a See Table 2 for experiment symbols
b Number of increments in indirectly detected dimensions (together)
c Maximum evolution time in indirectly-detected dimensions, in milliseconds
d Spectral widths in indirectly-detected dimensions, in kilohertz
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spectra were acquired for this sample: 3D HNCO (basis

spectrum), 5D HN(CA)CONH and 5D HabCabCONH.

Two data sets were constructed: utilizing only the

HN(CA)CONH (as only this spectrum provides sequential

links) and utilizing both 5D spectra. In both cases 100 % of

CSSSs were correctly assigned and the lengths of the

formed chains (38, 16, 16, 1) were maximal, spanning

complete fragments between the prolines. Unambiguous

positioning of the chains was achieved by recognition of

CSSSs corresponding to the five glycine residues. When

using also the HabCabCONH spectrum, the additional

information on Ca, Cb, Ha and Hb chemical shifts enabled

recognition of more amino-acid residue types. In the case

of using a single 5D spectrum, 100 % of resonances were

obtained, while using both 5D spectra reduced this number

to 87.7 %. This apparent inconsistency (better result from

less data) can be explained by noting that this percentage is

calculated relatively to all theoretically available reso-

nances: only HN, N and CO in the former case, Ca, Cb, Ha
and Hb added in the latter. It is noteworthy that when using

the HabCabCONH spectrum, the only methods appli-

cable to the assignment of peaks to particular peak types

were OutOfRangeCACBHA and DifferentiateCA-CB (see

‘‘Methods’’). The fact that no other experiment providing

any of the Ca, Cb, Ha or Hb chemical shift was available

to help in recognition of peaks types explains the relatively

low percentage of assigned resonances.

CsPin (Jaremko et al. 2011) is a 97-residue protein, but

six initial residues of the N-terminus were not labeled, thus

the assignable fragment included 91 residues. Three spectra

were acquired for this sample: 3D HNCO (basis spectrum),

4D HNCACO and 4D HNCACACB. All of them were

used by the program to achieve the assignment. The frac-

tion of assigned resonances was 97.7 % and the fraction of

assigned CSSSs was 94.4 %. The lengths of the chains

were rather long (six chains of at least 8 CSSSs), but did in

all but one cases not correspond to the possible maximum.

Three chains of length 1 remained unassigned. The

inability of the program to complete the assignment was

caused by the fact that on these planes none of the peaks

could be automatically assigned to a peak type (due to CO

degeneracy in two consecutive residues or to missing

peaks). Consequently, the links could not be formed.

Nevertheless manual fitting of the chains onto the protein

sequence was still possible (based on visual analysis of the

cross-sections instead of peak picking, and on testing of all

alternatives).

Azurin (Parr et al. 1976) with its 128 amino-acid resi-

dues (14 kDa) is the largest of the fully folded proteins

tested here. The data sets feature low completeness (see

Table 3). Several reasons are probably contributing to this:

higher relaxation rates cause lower sensitivity, this is fur-

ther reduced by the N–Ca coupling, and finally three of the

azurin spectra were recorded with the shortest experiment

times of Table 2 (except for the basis spectra). While

sensitivity is really a spectroscopic rather than a TSAR

problem, the low completeness represents an interesting

challenge for TSAR. Altogether five spectra were acquired:

Table 2 Types of experiments

run for the tested samples and

corresponding experimental

times (in hours)

Symbol of

experiment

Name of

experiment

Dimensionality Calbindin CsPin Azurin Delta

A (basis spectrum) HNCO 3D 1.9 12.9 1.9 3.1

B HNCOCA 4D – – 10.4 –

C HNCACO 4D – 23.2 12.9 –

D HNCACACB 4D – 23.2 14.2 –

E HabCabCONH 5D 18.7 – – 22.7

F HN(CA)CONH 5D 17.4 – 26.7 19.1

G (H)NCO(NCA)CONH 5D – – – 25.8

Table 3 Data completeness given as percentages of the cross-sections

Experiment Peaksa Calbindin CsPin Azurin C delta

HNCOCA 1 n.a. n.a. 100/0 n.a.

HNCACO 2 n.a. 90.8/8.1/1.1 85.4/13.0/1.6 n.a.

HNCACACB 4 n.a. 91.9/5.8/2.3/0/0 65.0/16.3/17.9/0.8/0 n.a.

HabCabCONH 2 85.9/14.1/0 n.a. n.a. 96.3/3.7/0

HN(CA)CONH 2 98.6/1.4/0 n.a. 65.1/26.0/8.9 90/8.7/1.3

(H)NCO(NCA)CONH 2 n.a. n.a. n.a. 87.5/8.7/3.8

a Number of peaks expected on each cross-section of the given spectrum

The first number refers to complete cross-sections, the following to cross-sections with one missing peak, with two missing peaks etc. The types

of peaks are not differentiated
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3D HNCO (basis spectrum), 4D HNCOCA, 4D HNCACO,

4D HNCACACB and 5D HN(CA)CONH, out of which

five data sets were constructed: a first one utilizing all high-

dimensional spectra and four others utilizing different

combinations of three out of four available high-dimen-

sional spectra. The percentage of assigned CSSSs was

96.7 % in the case of combining the HNCACO, HNCA-

CACB and HN(CA)CONH spectra, while in the remaining

four cases it was 100 %. In spite of the low completeness

of the given in Table 3, the percentage of assigned reso-

nances was 96 % or more. The level of difficulty of these

data sets is reflected in the lengths of the formed chains. In

one case seven assigned chains were short. Although in this

case all the assignments were correct, with this number of

short chains manual checking is strongly recommended.

Interestingly, one of the data sets utilizing three 4D spectra

(HNCOCA, HNCACO and HNCACACB; last line for

azurin in Tables 4, 5) provides identical results to the full

set, where the additional 5D HN(CA)CONH alone requires

26.7 h compared to 39.5 h for all three 4D spectra together.

The only difference in the result lies in the lengths of

formed chains—in the latter case they are slightly longer,

which makes the assignment more reliable.

Delta (Lopez de Saro et al. 1995) is a 20 kDa protein

(172 amino-acid residues), but the automatic assignment

was performed only for its unstructured C-terminal part

with 81 residues. This case was especially challenging due

to various repetitive sequences in the unstructured part

(glutamates: one stretch of four residues, one stretch of

three residues, four stretches of two residues; aspartates:

one stretch of four residues, four stretches of two residues;

lysines: one stretch of four residues, one stretch of two

residues) and small diversity of the types of residues

involved (25 aspartates, 23 glutamates, 8 lysines and 8

leucines in the 81 residue long unstructured chain).

Moreover, the unstructured part of delta contains a very

limited number of residues that are easily recognizable by

their shifts: no glycine, no serine, one threonine, four

Table 4 TSAR assignment results

Protein Set of

experimentsa
Total

experimental

time (h)

Assignments (%) Number of assigned/unassigned chains Number of assigned

CSSSs in

CSSSs Resonances Long (C8) Medium (3–7) Short (B2) Long/medium/short

chains

Calbindin A E F 38 100 87.7 3/0 0/0 1/0 70/0/4

A F 19.3 100 100 3/0 0/0 1/0 70/0/4

CsPin A C D 59.3 94.4 97.7 6/0 1/0 2/3 76/5/3

Azurin A B C D F 65.2 100 98.9 6/0 0/0 3/0 118/0/5

A C D F 54.8 96.7 96.0 7/0 3/0 1/4 108/10/1

A B D F 52.3 100 98.7 8/0 4/0 6/0 95/21/7

A B C F 51 100 100 6/0 0/0 3/0 119/0/4

A B C D 39.5 100 98.9 5/0 4/0 4/0 95/21/7

Delta A E F G 70.7 100 96.8 3/0 6/0 7/0 40/29/11

a See Table 2 for experiment symbols

Table 5 TSAR assignment results with specified types of nuclei

Protein Data seta Assigned resonances (%)

HN N CO CA CB HA HB total

Calbindin A E F 100 100 100 71.8 84.8 71.8 84.8 87.7

A F 100 100 100 n.a. n.a. n.a. n.a. 100

CsPin A C D 94.4 94.4 100 100 100 n.a. n.a. 97.7

Azurin A B C D F 100 100 100 100 94.0 n.a. n.a. 98.9

A C D F 96.7 96.7 97.7 97.7 90.6 n.a. n.a. 96.0

A B D F 100 100 100 99.2 94.0 n.a. n.a. 98.7

A B C F 100 100 100 100 n.a. n.a. n.a. 100

A B C D 100 100 100 100 94.0 n.a. n.a. 98.9

Delta A E F G 100 100 100 96.3 92.5 96.3 92.5 96.8

a See Table 2 for experiment symbols
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alanines. As a result, the chemical shift ranges are out-

standingly narrow, even comparing to other intrinsically

disordered proteins (Motáčková et al. 2010), e.g. for the

amide hydrogens it is 8.03–8.48 ppm and for the amide

nitrogens: 120.2–126.3 ppm (excluding two outliers).

Therefore the set of experiments employed to automati-

cally assign the resonances included, besides 3D HNCO

(basis spectrum), three 5D experiments: HN(CA)CONH,

(H)NCO(NCA)CONH and HabCabCONH. The first and

second spectra provide sequential links, while the last one

yields Cb, Hb, Ca, Ha resonances used for positioning of

the resulting chains. This set allowed to obtain a complete

assignment: 100 % of assigned CSSSs and 96.8 % of

assigned resonances. The chains were relatively short

(three long, six medium, seven short); nevertheless all of

them were correctly assigned (again, with this number of

short chains manual checking is recommended). Such a

good result may be surprising considering the presence of

many short chains, the low residue type diversity and the

small number of easily recognizable residues. It can be

explained by the use of HabCabCONH data. This tech-

nique provides Ha, Hb, Ca and Cb resonances, allowing

to exploit all the methods of chain positioning. This was

neither the case for CsPin nor for azurin, where only Ca
and Cb were available.

Discussion

Using the TSAR program, resonance assignment of proteins

can be based on various SMFT data sets. The choice of the

high-dimensional experiments should depend on the protein

size and chemical shift dispersion. Firstly, the dimension-

ality of experiments should not be too small (see below for a

discussion of overlapping cross-sections). The number of

experiments providing sequential links should depend on the

degree of chemical shift dispersion in the cross-sections’

dimensions and on data completeness (connected with the

sample concentration and the experiment sensitivity). For

example, in the case of calbindin a single spectrum providing

connectivities was sufficient to form chains of maximal

lengths, which could then easily be positioned in the protein

sequence. However, usually more spectra providing links

are required. The problem is especially difficult in the case

of unfolded proteins, where the chemical shifts of aliphatic

carbons and protons exhibit particularly low dispersion. In

this situation, spectra providing sequential links via these

types of nuclei (e.g. 4D HNCACACB, 4D HabCabNH) are

not sufficient and links via better-separated dimensions (HN,

N, CO) should be provided. For instance, for the delta protein

two 5D spectra providing the connectivities were necessary:

HN(CA)CONH, with links via HN and N, and (H)NCO(N-

CA)CONH, with links via N and CO. Besides link-providing

spectra also spectra enabling positioning of CSSSs chains are

required. If the chains are long and there are several glycines

in the protein sequence, simple recognition of these glycines

may allow for unambiguous mapping. While this was the

case for calbindin, where the entire assignment could be

achieved based only on the 5D HN(CA)CONH, this is usu-

ally not sufficient and the mapping step requires Cb and

possibly also Hb chemical shifts. In the case of azurin and

CsPin, the 4D HNCACACB spectrum was used to obtain Cb
chemical shifts (at the same time it also provided sequential

connectivities). The delta protein required a 5D spectrum

(HabCabCONH) for this purpose.

A condition for using TSAR is that data resulting from

all experiments can be SMFT-processed using a single

basis spectrum. This means that each of the high-dimen-

sional experiments must contain some dimensions common

with the basis spectrum (a ND experiment requires at least

N-2 common dimensions). The basis spectrum should

contain one peak per residue. Any residue not represented

in the basis spectrum (missing peak due to insufficient

sensitivity of the basis spectrum, but also normal absence

of peaks, e.g. for prolines if HN is involved) prevents

the calculation of the corresponding cross-sections of the

high-dimensional spectra. This hinders the formation of

sequential connectivities at the corresponding site of the

protein sequence and consequently breaks the chain of

CSSSs. Thus, the sensitivity of the basis spectrum is of

high importance, and the completeness of the basis spec-

trum peak list should be checked such that at least the

expected number of peaks is found. If false peaks appear in

the basis-spectrum, usually no peak appears in the corre-

sponding cross-sections of the high-dimensional spectra.

Thus, it has no negative impact on the final result, and it is

recommended to pick rather too many basis-spectrum

peaks than too few. We used Sparky (Goddard and Kneller

2002) for automated peak picking of the basis-spectra (but

any other peak-picking may be used here). Besides good

sensitivity, the basis spectrum should also be chosen and

recorded with the goal of high resolution. This ensures that

the cross-sections can be properly selected, avoiding any

decrease of peak intensities due to inaccurate shifts of the

dimensions corresponding to the basis spectrum, which

define the position of the cross-sections.

Cross-sections are calculated using the SMFT procedure

by setting frequencies of some of the dimensions to the

values obtained from the basis spectrum peak list (fixed

dimensions). If the basis spectrum frequencies in the fixed

dimensions are well separated, only peaks from one spin

system will appear on each cross-section. However, it can

happen that some sets of the fixed frequencies are sufficiently

close to produce cross-sections on which peaks originating

from several spin systems appear, i.e. some peaks show up on

more than one cross-section. The current TSAR program
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cannot cope with this situation. The input peak lists should

contain for each cross-section only the peaks originating

from the corresponding spin system. However, the task of

preparing such lists is usually rather straightforward. A peak

usually ‘‘belongs’’ to that cross-section on which it has the

highest absolute intensity (note, that this is not equivalent to

choosing the most intensive peaks for each cross-section).

Normally, if the dimensionality of the experiments was well

adjusted to the degree of resonance degeneracy of the sam-

ple, there should be only a few pairs of such overlapping

cross-sections and the problem can be solved manually or by

using a script detecting overlaps. More problematic are

situations with triplets of overlapping cross-sections. This

typically means that the dimensionality of the conducted

experiments was not sufficient. Therefore, the dimension-

ality should be adjusted to the given sample, meaning that the

peaks in the spectrum consisting of the fixed dimensions in

the higher-dimensional spectrum should (almost) not exhibit

any overlaps. For instance, if cross-sections of a 4D spectrum

are to be calculated based on amide proton and nitrogen

frequencies, the peaks in 15N-HSQC should be well sepa-

rated. So far we found that 5D experiments were sufficient

even for very difficult cases (e.g. the delta protein with

several repetitive sequences in a disordered part).

False peaks which appear in high-dimensional spectra

can be detected at the stage of assignment of peak types:

sometimes (depending on the set of experiments used and

on the spectrum in which the false peak appears) such

peaks do not fulfill the conditions of any peak type and

thus are disregarded. However, some methods of peak-type

recognition (i.e. OnlyPeak&OnlyTypeLeft and Differenti-

ateCA-CB) are not able to identify false peaks. If a false

peak is already assigned to a certain peak type, wrong

matches and/or mismatches can be established, which can

lead to the lack of assignment of a certain CSSSs chain or

to an incorrect assignment. To prevent such situations, the

peak-type recognition methods, which do not allow iden-

tifying false peaks, are applied only if no other methods

could recognize the peaks types for a certain CSSS. In

general, it is better to lose some weak peaks in higher-

dimensional spectra than to include false ones.

Problems with the present algorithm may arise due to

unusual Ca, Cb, Ha or Hb chemical shifts (i.e. shifts outside

of four standard deviations from the statistical average). This

can cause an error at two stages of the program operation:

assignment of peak to peak type (OutOfRangeCACBHA

method) and statistics-based amino acid recognition. In the

former case, the peaks of the given CSSS may remain

unassigned to any peak type, which can prevent link for-

mation in the following stage, or they may be assigned

incorrectly, which can cause formation of an incorrect link.

Amino-acid recognition problems can be caused not only by

untypical chemical shifts, but also by incorrect peak-type

recognition. Most problematic are confusions of Ha–Ca
peaks with Hb–Cb peaks; this may cause the chemical shift

statistics to propose a wrong amino acid type. Furthermore,

recognition of a pair of prochiral methylene protons in the

case of wrongly-recognized peak types will be incorrectly

interpreted. That is why the DifferentiateCA-CB method is

not a very safe criterion and only used when no other, more

reliable methods for Ca and Cb peaks are available. This

method was used in two of the presented data sets (calbindin

‘A E F’ data set and delta); while no incorrect peak-type

assignments were made by this method, a number of peaks

remained unassigned. Generally, in the case of incorrect

amino-acid recognition, the most favorable situation is that

all amino acid types are excluded; then, all amino acids types

are included back again and the mapping may be done

properly. Such a situation occurred in one of the test data sets

(for calbindin with one of the Hb chemical shifts of Lys25

being smaller than 0.5 ppm). A more severe problem occurs,

when the correct type is excluded, while some other types are

left. If the considered CSSS is part of a longer chain, this

chain will probably not be mapped, unless it is split. If it

belongs to a short chain (originally or as a result of splitting)

it may be mapped incorrectly. This is one of the reasons for

which the assignment of short chains is less reliable and

postponed to the end.

The ‘‘best-first’’ strategy for the mapping of chains onto

the protein sequence utilized by the TSAR program has one

major disadvantage. The incorrect assignment of one chain

will affect the rest of the assignments, which is especially

harmful if the chain is long. Some protection against this is

given by the detection of conflicts with other chains of at

least 70 % of the length of the considered chain. Therefore,

errors in an assignment often lower the percentages of

assigned resonances and CSSSs, without necessarily

yielding erroneous assignments.

The TSAR program was primarily designed for the

analysis of SMFT-processed data, which means that at least

4D spectra have to be run. This represents a spectroscopic

limitation, but means that TSAR will be mostly used on

unfolded proteins or on folded proteins up to 20 kDa, since

for larger folded proteins such high-dimensional spectra may

be not achievable due to fast signal relaxation. The TSAR

program can be used also for the analysis of data obtained

using methods other than SMFT provided that they are

organized in a way accepted by the algorithm. However, one

spectrum (with arbitrary dimensionality), containing one

peak per residue, has to serve as a basis spectrum. The def-

initions of other spectra must contain exactly two additional

frequency axes, and the order of the data equivalent to the

cross sections in these spectra has to correspond to the order

of peaks in the basis-spectrum peak list.

Attempts to compare TSAR with other computational

assignment tools involve parameter choices and typically
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lead to incompatibilities of input data that may be handled

in various ways. More generally, relevant comparisons

should be based on complete approaches (data acquisition

and analysis), for example in the context of efforts such as

CASD-NMR (Rosato et al. 2009). For a qualitative com-

parison, we run GARANT (Bartels et al. 1996, 1997),

which accepts almost exactly the same input as TSAR. The

GARANT results for individual nuclei types are collected

in Table 6. In general, the results of the two algorithms for

most of the data sets are comparable. We attribute the

slightly lower extent of assignments in GARANT to the

more general type of approach of the latter, making not full

use of the SMFT data, but also to the possibly non-optimal

choice of parameters made by us. The fact that GARANT

analyzes many assignment possibilities for each nucleus

and then chooses the best one, results in several sugges-

tions from independent runs with different starting seeds

(we run GARANT twelve times). The choice of how many

runs need to coincide for accepting an assignment may

explain the sometimes higher assignment rates of GA-

RANT (e.g. for CsPin) but at the same time the occurrence

of some incorrect assignments (e.g. for delta).

Conclusions

The TSAR program is a new algorithm for automatic res-

onance assignment designed to exploit all advantages of

2D cross-sections of spectra of high dimensionality (C4D)

obtained by SMFT processing. Focusing on this type of

input makes the approach robust in terms of assignment

completeness and reliability, and inexpensive with respect

to computational time. Furthermore, the user interface is

adapted for work with a set of cross-sections, which makes

the program easy to use. An important feature of TSAR is

the automatic determination of chemical shift tolerances.

This makes the approach unique and insensitive to user

experience. Due to its flexibility in defining experiments,

the program is prepared for emerging techniques, including

e.g. 13C-detected experiments (Bermel et al. 2006, 2009;

Nováček et al. 2011). Contrary to many other algorithms,

the TSAR program is able to cope with experiments which

involve three consecutive residues. An important feature of

the program is its ability to exploit information about

glycines which may arise from changing peak signs in the

absence of Cb carbons.

The robustness of the TSAR program was confirmed by a

series of experimental tests. It was shown, that even while

working with very difficult cases, such as an unfolded protein

fragment with various repetitive amino acid sequences, the

result can be complete and reliable. Currently, the bottle-

neck of the proposed assignment strategy is input data

preparation. Good quality peak lists have to be prepared for

the basis-spectrum and all higher-dimensional spectra.
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Non-uniform frequency domain for optimal exploitation of non-

uniform sampling. J Magn Reson 205:286–292

Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A,

Kozminski W (2012) Generalized fourier transform for non-

uniform sampled data. Top Curr Chem 316:79–124

Lopez de Saro FJ, Woody AY, Helmann JD (1995) Structural analysis

of the Bacillus subtilis delta factor: a protein polyanion which

displaces RNA from RNA polymerase. J Mol Biol 252:189–202

Maciejewski MW, Mobli M, Schuyler AD, Stern AS, Hoch JC (2012)

Data sampling in multidimensional NMR: fundamentals and

strategies. Top Curr Chem 316:49–77
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